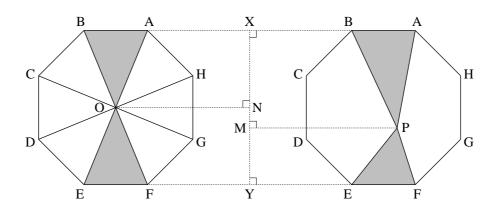
答 (1) $7.5 \,\mathrm{cm}^2$

- $(2) 8.75 \,\mathrm{cm}^2$
- 解説 (1) 正八角形 ABCDEFGH を中心 O を通るように八等分した図を新たに考え、問題で与えられた図と いっしょに左右に並べてみましょう。

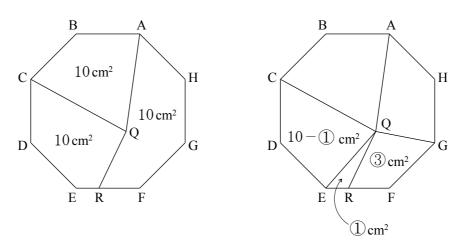


この図では、直線 XY が、AB を延ばした線に垂直になるように描いてあります。また、点 P から 直線 XY に垂直な直線 PM を、点 O から直線 XY に垂直な直線 ON を、それぞれ引いてあります。このとき、

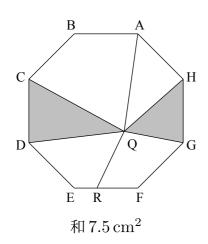
三角形 PAB + 三角形 PEF = AB
$$\times$$
 XM \div 2 + EF \times MY \div 2
= AB \times (XM + MY) \div 2 (AB = EF なので)
= AB \times XY \div 2
= AB \times (XN + NY) \div 2
= AB \times XN \div 2 + EF \times NY \div 2 (AB = EF なので)
= 三角形 OAB + 三角形 OEF

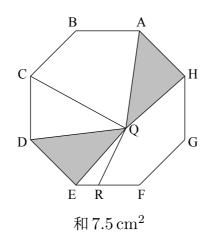
三角形 OAB も三角形 OEF も $30\div 8=3.75\,\mathrm{cm^2}$ なので、求める面積の和は $3.75\times 2=7.5\,\mathrm{cm^2}$ になります。

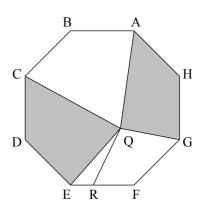
(2) 正八角形の面積が三等分されると $30\div 3=10\,\mathrm{cm}^2$ ずつになります。また,三角形 QER と四角形 QRFG の面積の比は 1:3 なので,それぞれ $0\,\mathrm{cm}^2$ と $0\,\mathrm{cm}^2$ とすると,四角形 QCDE の面積は五角形 QCDER の面積と三角形 QER の面積の差なので, $10-0\,\mathrm{cm}^2$ と表せます。



次に、三角形 QCD と三角形 QGH の面積の和も、三角形 QDE と三角形 QHA の面積の和も、(1) と同様に $7.5\,\mathrm{cm}^2$ であるので、四角形 QCDE と四角形 QGHA の面積の和は、 $7.5+7.5=15\,\mathrm{cm}^2$ になります。





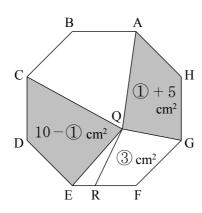


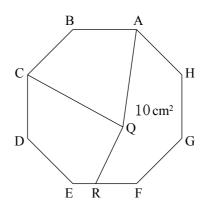
 $\pi 7.5 + 7.5 = 15 \,\mathrm{cm}^2$

四角形 QCDE の面積 10 - ① cm² に,① + 5 cm² を足せば

$$10 - (1) + (1) + 5 = 10 + 5 = 15 \,\mathrm{cm}^2$$

になるので、四角形 QGHA の面積は ① $+5 \text{ cm}^2$ です。





このとき、六角形 AQRFGH の面積に注目すると、3+1+5=4+5 cm² と 10 cm² が等しいことが分かります。したがって、

です。このとき、四角形 QCDE の面積は

$$10 - \bigcirc = 10 - 1.25 = 8.75 \,\mathrm{cm}^2$$

と求まります。